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Universal Crossover Approach to Equation of State
for Fluids
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It is well known that any classical equation of state fails to describe the
properties of fluids in the critical region, where the behavior of fluids is
strongly affected by density fluctuations. In the present work, a universal
approach to incorporate the effects of density fluctuations in the global
behavior of one-component fluids is proposed. As an illustration of our
general approach, a crossover generalization of a four-parametric cubic equa-
tion of state, which can be useful for engineering applications, is demon-
strated. The obtained crossover equation reproduces Ising-like singular scaling
behavior in the critical region and reduces to the original cubic equation of
state far away from the critical point. In addition, the crossover equation
of state is applied to describe thermodynamic properties of methane, ethane,
carbon dioxide, and water. It is shown that incorporation of critical fluctua-
tions leads to a significant improvement in the ability of the cubic equation
to represent thermodynamic properties and liquid–vapor equilibrium of one-
component fluids.

KEY WORDS: coexistence curve; critical point; equation of state; one-
component fluids; thermodynamic properties.

1. INTRODUCTION

Traditionally, for the description of thermodynamic properties of one-
component fluids in a wide range of pressures and temperatures, one uses
various modifications of cubic equations of state [1, 2]. In this paper
any equations of this type will be called mean-field equations of state.
The application of these mean-field equations encounters a fundamental
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problem, which is associated with the singular behavior of thermodynamic
properties of fluids in the critical region. It is well known that singular
behavior of fluids in the critical region is caused by anomalous density
fluctuations. Another effect of the critical fluctuations is a shift of criti-
cal parameters. Thus, the fluctuation effects inevitably make a mean-field
equation of state useless in the critical region. In particular, system-depen-
dent coefficients in the mean-field equations correlate with the mean-field
values of the critical temperature T0, pressure P0, and density ρ0, which
do not coincide with the actual experimental values Tc, Pc, and ρc.

Equations of state, which incorporate the fluctuation effects in the
critical region and reduce to mean-field equations far from the critical
point, are called the crossover equations of state. Crossover generalizations
of various mean-field equations of state have been presented in a number
of recent publications (see, for example, [3–6]). In all these works a gen-
eral approach to obtain crossover equations of state is similar and can be
represented by a set of consecutive operations. A mean-field equation of
state and an appropriate thermodynamic potential are selected. A so-called
singular part of the thermodynamic potential is separated from a regu-
lar background. The critical part is formulated in terms of dimensionless
deviations of the thermodynamic variables from their critical values. The
principal requirement for the critical part means a possibility to represent
it in the form of an analytical Landau expansion (if the critical fluctua-
tions are neglected) [7]. Finally, the actual (crossover) critical part of the
thermodynamic potential, affected by fluctuations, is obtained by scaling
renormalization of the dimensionless thermodynamic variables in the Lan-
dau-expansion critical part. The principal defect of this approach is the
following. The scaling transformations are not applicable to any physical
variable, but only to variables that possess a definite scaling dimensional-
ity. These variables are called the scaling variables. Thus, the main prob-
lem in the crossover procedure can be formulated as a definition of scaling
variables and their relations with experimental physical variables.

In the present paper four sets of physical variables are considered,
namely, scaling mean-field and crossover variables and experimentally
controlled thermodynamic mean-field and crossover variables. A general
approach to formulate the crossover equation of state is proposed. Within
this approach the relations between the different sets of physical variables
are postulated. In particular, relations between the experimental variables
and the scaling ones enable us to obtain a crossover equation of state by a
conventional fluctuation-induced renormalization of the scaling variables.
It should be taken into account that a fluctuation shift of the critical point
also leads to a change in relations between the mean-field thermodynamic
variables and the variables controlled by experimental conditions in real



Universal Crossover Approach to Equation of State for Fluids 1389

fluids. In other words, the relations between the mean-field and crossover
thermodynamic variables define the shifts of the critical parameters.

2. SCALING VARIABLES

In accordance with scaling theory [8], a Helmholtz-like potential F is
a function of some scaling variables in the critical region. These variables
characterize changes of the system symmetry at the phase transition. For
the potential F such variables are the order parameter ϕ1 and the tem-
perature-like field h2 [8]. Let us also define a field-dependent Gibbs-like
thermodynamic potential � which depends on the temperature-like field
h2 and the ordering field h1 thermodynamically conjugated to the order
parameter:

�(h2, h1)=F(h2, ϕ1)−h1ϕ1. (1)

For the potentials F and � the following differential relations take place:

dF = −ϕ2 dh2 +h1 dϕ1, d�= −ϕ2 dh2 − ϕ1 dh1, (2)

where ϕ2 is the scaling analog of the entropy. Furthermore, the functions
F and � will be called the scaling potentials in contrast to traditional
thermodynamic potentials, which depend on experimental thermodynamic
variables.

To obtain a crossover equation of state, it is necessary to define rela-
tions between the scaling and experimental thermodynamic variables. In
the present work, for this purpose, we formulate relations between the
scaling potentials F and � and the Helmholtz energy A and Gibbs energy
G, which depend on experimental thermodynamic variables. At first, the
relations between the scaling and thermodynamic potentials are defined in
the mean-field approximation. Secondly, a generalization for the fluctua-
tion region is performed by corresponding renormalization of the scaling
variables.

In the mean-field approximation the scaling potentials are given by
the Landau theory:

Fm =u2 h2m ϕ2
1m +u4 ϕ4

1m, �m =Fm −h1mϕ1m. (3)

Here and below, the thermodynamic quantities in the mean-field approx-
imation are marked by the index “m”. In this work the molar density
of the Helmholtz energy and the Gibbs energy are used as the ther-
modynamic potentials. We note that the mean-field equation of state is
supposed to be known and, consequently, an explicit form of the thermo-
dynamic potentials Am and Gm is also known.
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3. SINGULAR PARTS OF THE THERMODYNAMIC POTENTIALS

Now we define dimensionless thermodynamic quantities in the mean-
field approximation. �Pm = Pm/P0 is the dimensionless pressure, �Am =
Am/RT0 is the molar free-energy, �Gm =Gm/RT0 is the molar Gibbs energy,
�Tm =Tm/T0 and �vm =vm z0/v0 are the reduced temperature and molar vol-
ume, respectively, z0 = P0v0/RT0 is the critical compressibility factor in
the mean-field approximation, and R is the universal molar gas constant.
Obviously, the final results do not depend on a particular normalization.
Therefore, the dimensionless quantities are selected just for convenience.
As will be clear below, the inclusion of the critical compressibility factor
into the expression for the dimensionless molar volume facilitates the anal-
ysis of the initial cubic equation of state. Besides, henceforward the exper-
imental values of the critical parameters Tc, Pc, and vc will be used to
define the dimensionless crossover quantities.

The differential relations for the dimensionless molar thermodynamic
potentials �Am and �Gm can be written in the form,

d�Am =−�sm d�Tm − �Pm d�vm, d�Gm =−�sm d�Tm +�vm d�Pm, (4)

where �sm = sm/R is the dimensionless molar entropy in the mean-field
approximation. Let us define the critical part of the molar Helmholtz
energy, which reproduces the Landau expansion near the mean-field crit-
ical point and becomes singular near the actual critical point affected by
fluctuations. For this purpose one defines the ordering field in the system

��Pm = �Pm − �P m
s , (5)

where

�P m
s (�Tm)=

{ �Pm(�Tm,�v0), if �Tm >1
�Pm(�Tm,�vl

m), if �Tm ≤1
, (6)

and �vl
m is the molar volume of the liquid phase.

Now let us define the singular part of the molar free energy by the
condition,

(
∂ �Am

s

∂�vm

)
�Tm

=−��Pm. (7)

Integrating this equation one finds

�Am
s = �Am − �Am

0 −��vm �P m
s , (8)
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where �Am =− ∫ �Pm d�vm is the molar Helmholtz energy, �Am
0 = �Am(�Tm,�v0),

and ��vm =�v0 −�vm is the dimensionless deviation of the molar volume
from its critical value. In this case the coexistence curve is determined by
two conditions:

(
∂ �Am

s

∂ ��vm

)
�Tm

= ��Pm =0, �Am
s (��vl

m)= �Am
s (��vg

m), (9)

The first one coincides with the condition, �Pm (�vl
m)= �Pm (�vg

m) and the sec-
ond one coincides with the condition of equal chemical potentials in the
coexisting phases.

Let us also define the singular part of the molar Gibbs potential
(known as the chemical potential) connecting it with the singular part of
the free-energy density �Am

s by a common Legendre transformation;

�Gm
s = �Am

s −��vm��Pm. (10)

Within these definitions for the quantities �Am
s and �Gm

s , the following
differential relations take place:

d�Am
s =−

(
��sm +��vm

(
d�P m

s

d�Tm

))
d�Tm +��Pmd��vm,

d�Gm
s =−��smd�Tm −��vmd�Pm, (11)

where ��sm =�sm −�sm
0 and �sm

0 =− (d�Am
0

/
d�Tm

)
.

It is easy to verify that in the close vicinity of the mean-field critical
point the expressions for �Am

s and �Gm
s in lowest approximation can be pre-

sented in the form,

�Am
s =u2��Tm��v2

m +u4��v4
m, �Gm

s = �Am
s −��vm��Pm, (12)

where ��Tm = �Tm − �T0, while u2 =− 1
2!

(
∂2 �Pm

∂�Tm∂�vm

)0
and u4 =− 1

4!

(
∂3 �Pm
∂�v3

m

)0
are

the expansion coefficients. The superscript “0” means that the derivative
is calculated at the mean-field critical point. Despite the evident similar-
ity of the expansions (Eq. (12)) and the corresponding Landau expansion,
Eq. (3), the variable ��vm cannot be identified with the order parameter.
Actually in the Landau theory the singular part of the free-energy den-
sity is invariant with respect to the replacement ϕ1m by − ϕ1m. At the
same time, there is no invariance of the free-energy density with respect to
the replacement ��vm by −��vm, except asymptotically close to the critical
point.
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4. CONNECTION BETWEEN SCALING AND THERMODYNAMIC
VARIABLES

In the present work the connection of scaling and thermodynamic
quantities in the mean-field approximation are determined as

��Pm =h1m =
(

∂Fm

∂ϕ1m

)
h2m

, �Gm
s =�m =Fm −ϕ1m

(
∂Fm

∂ϕ1m

)
h2m

. (13)

The above-mentioned quantities are the functions of scaling and thermo-
dynamic variables respectively. Thus, the relations, Eq. (13), are a closed
system of these equations. Taking into account the expression, Eq. (3), for
Fm, the connection between the scaling and experimental variables can be
obtained as a solution of Eqs. (13). In particular, along the coexistence
curve (at the condition h1m =0) one finds

ϕ2
1m =

√
−

�Gm
s

u4
, h2m =−2u4

u2

√
−

�Gm
s

u4
. (14)

Also, by using Eqs. (2) and (11), one can easily obtain the differentials of
the scaling fields h1m and h2m;

dh1m = d��Pm =−
(

d�P m
s

d�Tm

)
d�Tm + d�Pm,

dh2m = − 1
ϕ2m

[
d�Gm

s +ϕ1md��Pm
]

= 1
ϕ2m

(
��sm +ϕ1m

(
d�P m

s

d�Tm

))
d�Tm +

1
ϕ2m

(��vm −ϕ1m)d�Pm. (15)

Note that Eq. (13) and the functional dependences in Eq. (3) for poten-
tials �m and Fm are supposed to be correct in the entire region of the
fluid state. Correspondingly, Eq. (13) also give relations between the scal-
ing and experimental variables in the entire region of the fluid state.

5. EFFECTS OF FLUCTUATIONS

Formulation of the thermodynamic potentials and of the connection
between scaling and physical measurable variables enables us to take into
account the influence of fluctuations in the critical region. In accordance
with the theory of critical phenomena, the effects of fluctuations are incor-
porated by a renormalization group method [8]. Using Eqs. (1) and (2), let
us consider the scaling thermodynamic potential � depending on the scal-
ing field h2 and the order parameter ϕ1. In this case the order parameter
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ϕ1 should be considered as a function of the scaling fields h1 and h2. As
in the critical region the order parameter ϕ1 is a strongly fluctuating value,
and the scaling potential � may be represented through the effective Ham-
iltonian [7,8],

�= 1
�

ln
[∫

exp (−�Heff )Dϕ1

]
. (16)

Here � is a normalization factor, while the effective Hamiltonian Heff with
the given order parameter configuration ϕ1(�r) can be written in the form,

Heff [ϕ1]= 1
V

∫ [
u2h2ϕ

2
1(�r)+u4ϕ

4
1(�r)+ c0 (∇ϕ1(�r))2 −h1ϕ1(�r)

]
d�r, (17)

where V is the volume of the system and c0 is a non-universal coeffi-
cient, c0 >0. Note that in the absence of fluctuations the order parameter
ϕ1 is equal to its average value ϕ1m, while the thermodynamic potential
� explicitly reduces to its mean-field limit �m. Crossover expressions for
the scaling quantities can be calculated as a result of a smoothing pro-
cedure within the renormalization group method and ε-expansion [9–12].
The crossover expressions obtained after some phenomenological gener-
alization are given in the Appendix. Asymptotically close to the critical
point the crossover reproduces the “linear” model of the equation of state
[13], whereas far away from the critical point it reduces to the mean-field
approximation.

Inclusion of fluctuations in the framework of the phase-transition the-
ory is valid for the scaling quantities. To formulate the crossover equation
of state in terms of measurable physical variables, it is necessary to define
a relation between the scaling and thermodynamic quantities in the fluc-
tuation region as well as a relation between the crossover quantities and
the corresponding mean-field quantities. It is assumed within the suggested
approach that the critical parts of the thermodynamic potentials �A and �G
are defined similarly in the mean-field approximation. Moreover, it is sup-
posed that Eq. (13) for the connection between the singular part of the
thermodynamic potential and the scaling potential is valid in the fluctua-
tion region as well;

�Gs =�. (18)

At the same time, a relation between the thermodynamic field ��P and
the scaling ordering field h1 changes and will be determined below. One
should also keep in mind that in the crossover procedure experimental val-
ues of the critical parameters are used instead of mean-field ones.
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6. CONNECTION BETWEEN MEAN-FIELD AND CROSSOVER
VARIABLES

In the present work it is supposed that the effects of the order-param-
eter fluctuations do not result in a modification of the scaling fields:

h1 =h1m, h2 =h2m. (19)

Equation (19) determines the relations between the crossover and mean-
field scaling variables. In order to obtain the equation of state, it is also
necessary to define a relation between the crossover and mean-field ther-
modynamic variables. Let us assume that the actual measurable dimen-
sionless temperature �T and the mean-field dimensionless temperature �Tm
are equal;

�T = �Tm. (20)

To define a relation between the mean-field and crossover pressure, one
should note that in accordance with the theory of critical phenomena
the coexisting curve of one-component fluids is determined by the con-
dition h1 = 0. It means that the scaling ordering field h1 is proportional
to the dimensionless deviation of the real pressure �P from the saturation
pressure�Ps(�T ):

h1 =ωp��P , (21)

where ��P = �P − �Ps

(�T ) and ωp is a coefficient. Hence, taking into account
Eqs. (13) and (19) one obtains ��Pm = ωp��P . A natural requirement of
simultaneous vanishing of the values �P and �Pm results in the relation,

�Pm =ωp
�P . (22)

The scaling factor ωp = �P m
s
/�Ps depends on the dimensionless temperature

�T .
The crossover expressions for other thermodynamic quantities can

be obtained by differentiation of corresponding potentials. In particular,
using the differential relation, Eq. (11), for the quantity �Gs, as well as Eqs.
(2) and (18)–(21), one can find

��v = −
(

∂ �Gs

∂ �P

)
�T

=−
(

∂�

∂ �P

)
�T

=ϕ2

(
∂h2

∂ �P

)
�T

+ϕ1

(
∂h1

∂ �P

)
�T

= ωp

(
ϕ1 +ϕ2

(
∂h2m

∂ �Pm

)
�Tm

)
.



Universal Crossover Approach to Equation of State for Fluids 1395

Taking into account the differential relations, Eq. (15), one can obtain

��v =ωp

(
ϕ1 + ϕ2

ϕ2m
[��vm −ϕ1m]

)
. (23)

Indeed, Eqs. (20), (22), and (23) determine a new crossover equation of
state for one-component fluids and can be used for the description of
experimental data.

7. INITIAL EQUATION OF STATE

To illustrate possibilities of the suggested approach for the descrip-
tion of one-component fluid thermodynamic properties, the following four-
parametric cubic equation is used as an initial mean-field equation of
state:

�Pm =
�T

(�a1 −��vm)
− �a2ω

(�a3 −��vm)
+ �a2ω

(�a4 −��vm)
, (24)

where

ω=1+m1

(
1−

√
�T
)

+m2

(
1−

√
�T
)2

. (25)

In the chosen way of normalization of the thermodynamic variables, the
coefficients �a2, �a3, and �a4 are expressed through the coefficient �a1:

�a2 =− (1−�a1)
2

√
1−4�a1

, �a3 = 1
2

(1−�a1)
[
1+

√
1−4�a1

]
,

�a4 = 1
2

(1−�a1)
[
1−

√
1−4�a1

]
. (26)

To complete the model it is necessary to define the function ωp (see Eqs.
(22) and (23)). This function is written similarly to Eq. (25);

ωp =1+k1

(
1−

√
�T
)

+k2

(
1−

√
�T
)2

. (27)

Thus, the universal crossover model is formulated entirely. Equations (20)
and (22)–(27) enable us to calculate the thermodynamic properties of one-
component fluids in a wide range of the thermodynamic variables includ-
ing the critical region. In particular, to calculate P –ρ–T dependencies, the
presented crossover model contains ten non-universal parameters: Tc, Pc,
ρc, �a1, m1, m2, k1, k2, Gi, and g (see Appendix). These parameters are
individual for each substance and can be found from the best correlation
between the calculations and experiment.
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8. COMPARISON WITH EXPERIMENT

Various algorithms can be used to calculate the thermophysical
properties of fluids with the proposed crossover model. For instance, the
calculation of isothermal properties of fluids in the one-phase region
reduces to the calculation of density ρ at the given experimental values of
temperature T and pressure P . Having a set of initial values of the non-
universal parameters and using conditions in Eqs. (20) and (22), one can
find the values of ��vm as well as ϕ1m, ϕ2m, h1m, and h2m in the mean-field
approximation. Then, using the conditions in Eq. (19) and the expressions
in Eq. (A1) one can find the respective values of the parametric variables
r and θ in order to calculate the scaling densities ϕ1 and ϕ2. Finally, by
substituting all essential values into the expression, Eq. (23), it is possible
to find the fluid density ρ.

The values of the crossover adjustable parameters are found within
the optimization procedure under the condition of the best correlation
between the calculated and experimental data. In this work the crossover
equations of state are obtained for methane, ethane, carbon dioxide, and
water. The standard simulated reference data [14] are used as the ini-
tial data for optimization of the non-universal parameters. These reference
data demonstrate good agreement with accurate experimental data.

For optimization of the crossover-model parameters, the experimental
saturation pressure P(T ) and liquid–vapor coexisting curve ρ(T ) are used.
The calculation algorithm for the phase equilibrium fluid properties is the
same as that for calculation of isothermal properties. The only difference
is the condition for the scaling and mean-field ordering fields to be zero:
h1 = h1m = 0. The calculations are made at the given experimental value
of temperature T . The system-dependent parameters were determined by
the best description requirement of the standard simulated data. The val-
ues of the parameters are listed in Table I. It should be noted that within
the optimization procedure the values of the critical parameters Tc and
Pc were fixed on the values recommended by the standard data [14]. The
critical densities ρc were considered as adjustable parameters. As one can
see Table I, the obtained values of the critical densities are slightly smaller
than the recommended values.

The calculated P(T ) and ρ(T ) dependences in comparison with the
simulated data of the liquid–vapor equilibrium for methane, ethane, car-
bon dioxide, and water are presented in Figs. 1–4. As can be seen in
the figures, the proposed crossover approach provides a good correlation
between the crossover model and the simulated data along the coexistence
curves in the entire region of the fluid existence excluding the immediate
vicinity of the critical point (see insets in Figs. 1–4). The deviations of the
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Table I. Non-universal Parameters of the One-Component Fluid
Crossover Equations of State

CH4 C2H6 CO2 H2O

�a1 0.1704 0.1726 0.1694 0.1505
m1 −0.1350 0.0731 0.2272 0.2930
m2 1.1194 1.3374 1.8689 1.8823
k1 0.6501 0.6014 0.6665 0.6534
k2 −0.5816 −0.4938 0.1111 −0.9813
Gi 0.1396 0.1357 0.1273 0.1007
g 0.0860 0.1130 0.0955 0.2337
Tc (K) 190.564 305.33 304.1282 647.096
Pc (MPa) 4.5992 4.8718 7.3773 22.064

ρc (mol ·dm-3) 9.8553a 6.6060a 10.1938a 17.1563a

10.139b 6.8897b 10.6249b 17.8737b

zc 0.2946 0.2905 0.2862 0.2390

aOptimized values of the critical densities.
bRecommended values of the critical densities [14].

calculated densities from the simulated data in the critical region could be
associated with a shift of the critical density ρc. Our attempts to fix ρc on
the values recommended by the standard data simulator resulted in some
improvement in the correlation close to the critical point, but the quality
of the description in the remaining region was considerably deteriorated.
This feature is typical for each substance for which the optimization of the
crossover model is performed.

Besides the phase equilibria, the calculations of isothermal properties
in comparison with the simulated data are presented in Figs. 5–8. Since
the one-phase isothermal data were not used for the optimization of the
crossover model, the presented results illustrate the predictive capabilities
of the crossover equation of state. As one can see in the figures, calcula-
tions for near-critical isotherms correlate with the standard simulated data
worse than for high- and low-temperature isotherms. It should be noted
also that inclusion of the simulated isothermal data into the optimization
procedure does not lead to significant improvements in the description of
the one-phase region.

Thus, in the framework of the proposed crossover model it is pos-
sible to obtain the global equations of state for real one-component flu-
ids, which allow calculation of thermophysical properties in the one- and
two-phase regions. The calculation results are in good agreement with the
experimental data in the entire region of the fluid state with the excep-
tion of the immediate vicinity of the critical point. Essential discrepan-
cies and apparent shifts of the critical density values in the crossover
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Fig. 1. Coexistence curve (A) and saturation-pressure curve (B) for methane. Lines cor-
respond to the crossover-model optimization. The star indicates the location of the crit-
ical point for the crossover equation of state. The symbols “•” represent the standard
simulated data [14]. Inset shows the immediate vicinity of the critical point.

Fig. 2. Coexistence curve (A) and saturation-pressure curve (B) for ethane. Notations
are the same as in Fig. 1.

equations of state are obvious defects of the proposed model. They can
be caused by different reasons. First, a descriptive ability of the cross-
over model is evidently connected to the transition from the fluctua-
tion behavior of thermodynamic properties in the near-critical region to
the mean-field behavior far from the critical point. In the present work
this transition is provided by the crossover function Y (see Appendix).
The expression, Eq. (A3), for the crossover function corresponds to some
phenomenological generalization for the one-loop approximation of the



Universal Crossover Approach to Equation of State for Fluids 1399

Fig. 3. Coexistence curve (A) and saturation-pressure curve (B) for carbon dioxide.
Notations are the same as in Fig. 1.

Fig. 4. Coexistence curve (A) and saturation-pressure curve (B) for water. Notations are
the same as in Fig. 1.

renormalization-group method. Being an approximation the expression,
Eq. (A3), is imperfect. Secondly, the accuracy of the experimental-data
description within the crossover model depends essentially on the initial
mean-field equation of state. In particular, the use of a two-parametric
cubic equation [2] as the initial mean-field equation of state makes agree-
ment with experiment considerably worse.

However, the most important reason for the defects mentioned above
is a fundamental problem associated with the singular diameter of the
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Fig. 5. Phase equilibria and isotherms of methane. Lines
correspond to the crossover equation of state. Solid line
represents the coexistence curve. Dashed lines are predic-
tions for the isotherms. The star marks the critical point
for the crossover equation of state. Symbols represent the
standard simulated data [14]: the solid circles “•” show
the coexistence curve and the open circles “◦” are the iso-
thermal data.

liquid–vapor coexistence curve. The presented crossover model gives the
following result for the singular diameter close to the critical point:

ds = 1
2

[
(ρl −ρc)+ (ρg −ρc

)]∼=B1 |τ |2β +B2 |τ |1−α , (28)

where τ =T
/
Tc −1 and the coefficients B1 and B2 are non-universal con-

stants. This dependence agrees with the corresponding expression within
the “complete scaling” model [15, 16]. The presence of the term ∝ | τ |2β

in the expression, Eq. (28), is associated with a particular selection of the
ordering field and the thermodynamic potential. However, in our model
the coefficients B1 and B2 are not independent as the ordering field is
associated with pressure and temperature only and does not include a con-
tribution from the chemical potential. This constraint can lead to a critical
density shift and, as a result, to some distortion in the description of the
critical region.
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Fig. 6. Phase equilibria and isotherms of ethane. Nota-
tions are the same as in Fig. 5.

Fig. 7. Phase equilibria and isotherms of carbon dioxide.
Notations are the same as in Fig. 5.
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Fig. 8. Phase equilibria and isotherms of water. Nota-
tions are the same as in Fig. 5.

In this respect, we anticipate that the choice of the ordering field as
a linear combination of pressure, temperature, and chemical potential, as
proposed by the “complete scaling”, can provide a more adequate descrip-
tion of the standard simulated data in the critical region.

APPENDIX

Phenomenological generalized crossover expressions for the scaling
thermodynamic quantities are conveniently presented in the parametric
form. In this case,

h2 = rY γ−1
�

(
1− λ1

s2
θ2
)

,

h1 = b1s

λ2

√
u3

2

u4
Gi

1
2 (1+α −γ ) rγ+β Y (γ−2β)

2�
Zh

ϑ2
s

θ
[
ϑ2

s − θ2
]
,

ϕ1 =
√

u2

u4 s2
Gi

1
2 −β rβ Y (γ−2β)

2� θ,

(A1)

ϕ2 = (2−α)

λ2

u2
2

u4
Giα r1−α Y (1−2β)

�
Zas

ϑ2
as

[
ϑ2

as − θ2
]
− 2

λ2

u2
2

u4
h2.
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Here the variable r has a meaning of the generalized distance to the crit-
ical point, and the value θ sets a deviation from the critical isochore. The
values of the critical indexes α, β, γ , and � in the expressions, Eq. (A1),
correspond to the universality class of the three-dimensional Ising model
[17, 18]:

α =0.110, β =0.3255, γ =1.239, �∼=0.5. (A2)

In this work for the crossover function Y the two-parametric generalized
form is used;

Y = 1 + q − q(
g +q

γ
�

)
�
γ

, (A3)

where q = (
r
/
Gi
)�, Gi is the Ginzburg parameter, and g is an addi-

tional non-universal parameter which characterizes the transformation to
the mean-field limit (q ∼= g). The amplitude crossover functions ϑs, ϑas,
Zas, and Zh have a form:

ϑ2
s = (1+ e1�q)[

1+ β
γ

{D −1}+ β
γ
e2 {D +1}�q

] ,

ϑ2
as = γ (γ −1)

(1−α)(γ −2β)

(1+�e1�q)[
1+ (γ−α)

2(1−α)

{�D +1
}�q] ,

Zas =
[
1+�e1

(
1− b2

4

{
1− �D} θ2

)
�qĜ

]
[
1+γ�qĜ

] ,

Zh =
[
1+ e1�qĜ+ β

γ
(1+ e2�q) {D −1} θ2Ĝ

]
[
1+γ�qĜ

] ,

(A4)

where

D =
√

1 + e3�q
(1 + e2�q)2

, �D =
√

1 − �e3�q
(1 + �e2�q)2

,

Ĝ = 1[
1−

(
1− 2β

γ

)
θ2
] . (A5)

Argument �q in Eqs. (A4) and (A5) is defined as

�q = x

(1−x)
, x = q

Y
dY
dq

. (A6)
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The universal constants s2, λi , bi , ei , and �ei in Eqs. (A1), (A4), and (A5)
can be expressed through the critical exponents:

s2 = γ (1−2β) (1+γ −α)

2β (1−α) (γ −1)
,

λ1 = (γ −2β) (1+γ −α)

2β (1−α) (γ −1)
, λ2 = α (γ −2β) (1+γ −α)2

γ (1−α) (γ −1)2
,

b1 =2α
(2−α) (1−α) (γ −2β)

γ 2 (γ −1) (1−2β)
, b2 = (2−α)

(γ −α) (γ −2β)

γ 2 (γ −1)
,

e1 =2βγ
(1 + γ − α)2

(1−α) (2−α)
, e2 =γ

(2γ −1)

(1−α)
, e3 =4γ

(γ −1) (γ −2β)

(1−α) (2−α)
,

�e1 = 2γ

(2 − α)
, �e2 = (γ − α)

2β
, �e3 = 2α (γ − 1)

β (2 − α)
.

(A7)

In the immediate vicinity to the critical point

q → 0, �q → 0, Y → 1, ϑs → 1,

ϑas → γ (γ −1)

(1−α)(γ −2β)
, Zas = Zh → 1,

and the expressions in Eq. (A1) reduce to the original definitions for the
scaling variables in the “linear” model [13].
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